- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Wei (2)
-
Prabhune, Prajakta (2)
-
Schadler, Linda S. (2)
-
Brinson, L. Catherine (1)
-
Brinson, Lynda Catherine (1)
-
Comlek, Yigitcan (1)
-
Gupta, Praveen (1)
-
Iyer, Akshay (1)
-
Prasad, Aditya (1)
-
Shandilya, Abhishek (1)
-
Sundararaman, Ravishankar (1)
-
Tao, Siyu (1)
-
Wang, Yixing (1)
-
Zhang, Yichi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Polymer nanodielectrics present a particularly challenging materials design problem for capacitive energy storage applications like polymer film capacitors. High permittivity and breakdown strength are needed to achieve high energy density and loss must be low. Strategies that increase permittivity tend to decrease the breakdown strength and increase loss. We hypothesize that a parameter space exists for fillers of modest aspect ratio functionalized with charge-trapping molecules that results in an increase in permittivity and breakdown strength simultaneously, while limiting increases in loss. In this work, we explore this parameter space, using physics-based, multiscale 3D dielectric property simulations, mixed-variable machine learning and Bayesian optimization to identify the compositions and morphologies which lead to the optimization of these competing properties. We employ first principle-based calculations for interface trap densities which are further used in breakdown strength calculations. For permittivity and loss calculations, we use continuum scale modelling and finite difference solution of Poisson’s equation for steady-state currents. We propose a design framework for optimizing multiple properties by tuning design variables including the microstructure and interface properties. Finally, we employ mixed-variable global sensitivity analysis to understand the complex interplay between four continuous microstructural and two categorical interface choices to extract further physical knowledge on the design of nanodielectrics.more » « less
-
Iyer, Akshay; Zhang, Yichi; Prasad, Aditya; Gupta, Praveen; Tao, Siyu; Wang, Yixing; Prabhune, Prajakta; Schadler, Linda S.; Brinson, L. Catherine; Chen, Wei (, Molecular Systems Design & Engineering)With an unprecedented combination of mechanical and electrical properties, polymer nanocomposites have the potential to be widely used across multiple industries. Tailoring nanocomposites to meet application specific requirements remains a challenging task, owing to the vast, mixed-variable design space that includes composition ( i.e. choice of polymer, nanoparticle, and surface modification) and microstructures ( i.e. dispersion and geometric arrangement of particles) of the nanocomposite material. Modeling properties of the interphase, the region surrounding a nanoparticle, introduces additional complexity to the design process and requires computationally expensive simulations. As a result, previous attempts at designing polymer nanocomposites have focused on finding the optimal microstructure for only a fixed combination of constituents. In this article, we propose a data centric design framework to concurrently identify optimal composition and microstructure using mixed-variable Bayesian optimization. This framework integrates experimental data with state-of-the-art techniques in interphase modeling, microstructure characterization and reconstructions and machine learning. Latent variable Gaussian processes (LVGPs) quantifies the lack-of-data uncertainty over the mixed-variable design space that consists of qualitative and quantitative material design variables. The design of electrically insulating nanocomposites is cast as a multicriteria optimization problem with the goal of maximizing dielectric breakdown strength while minimizing dielectric permittivity and dielectric loss. Within tens of simulations, our method identifies a diverse set of designs on the Pareto frontier indicating the tradeoff between dielectric properties. These findings project data centric design, effectively integrating experimental data with simulations for Bayesian Optimization, as an effective approach for design of engineered material systems.more » « less
An official website of the United States government
